首页> 外文OA文献 >Single-molecule Electronics: Cooling Individual Vibrational Modes by the Tunneling Current
【2h】

Single-molecule Electronics: Cooling Individual Vibrational Modes by the Tunneling Current

机译:单分子电子学:冷却单个振动模式   隧道电流

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Electronic devices composed of single molecules constitute the ultimate limitin the continued downscaling of electronic components. A key challenge forsingle-molecule electronics is to control the temperature of these junctions.Controlling heating and cooling effects in individual vibrational modes, can inprinciple, be utilized to increase stability of single-molecule junctions underbias, to pump energy into particular vibrational modes to performcurrent-induced reactions or to increase the resolution in inelastic electrontunneling spectroscopy by controlling the life-times of phonons in a moleculeby suppressing absorption and external dissipation processes. Under bias thecurrent and the molecule exchange energy, which typically results in heating ofthe molecule. However, the opposite process is also possible, where energy isextracted from the molecule by the tunneling current. Designing a molecular'heat sink' where a particular vibrational mode funnels heat out of themolecule and into the leads would be very desirable. It is even possible toimagine how the vibrational energy of the other vibrational modes could befunneled into the 'cooling mode', given the right molecular design. Previousefforts to understand heating and cooling mechanisms in single moleculejunctions, have primarily been concerned with small models, where it is unclearwhich molecular systems they correspond to. In this paper, our focus is onsuppressing heating and obtaining current-induced cooling in certainvibrational modes. Strategies for cooling vibrational modes in single-moleculejunctions are presented, together with atomistic calculations based on thosestrategies. Cooling and reduced heating are observed for two different coolingschemes in calculations of atomistic single-molecule junctions.
机译:由单分子组成的电子设备构成了电子组件持续缩小尺寸的最终限制。单分子电子器件的关键挑战是控制这些结的温度。控制单个振动模式下的加热和冷却效果的原则是可以用来提高单分子结欠偏压的稳定性,将能量注入特定的振动模式以执行电流。诱导反应或通过抑制吸收和外部耗散过程来控制分子中声子的寿命,从而提高非弹性电子隧道光谱学的分辨率。在偏置下,电流和分子交换能量,这通常导致分子发热。但是,相反的过程也是可能的,其中通过隧穿电流从分子中提取能量。设计一种分子“散热器”时,将需要一种特殊的振动模式,使热量从分子漏出并进入引线。给定正确的分子设计,甚至可以想象其他振动模式的振动能量如何转化为“冷却模式”。先前了解单分子连接处的加热和冷却机理的努力主要与小型模型有关,在这种情况下,尚不清楚它们对应于哪个分子系统。在本文中,我们的重点是在某些振动模式下抑制加热并获得电流感应冷却。提出了冷却单分子结中振动模式的策略,以及基于这些策略的原子计算。在计算原子性单分子结时,观察到两种不同的冷却过程的冷却和热量减少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号